Чему равна работа сил трения. Современные проблемы науки и образования

С механической работой (работой силы) вы уже знакомы из курса физики основной школы. Напомним приведенное там определение механической работы для следующих случаев.

Если сила направлена так же, как перемещение тела, то работа силы


В этом случае работа силы положительна.

Если сила направлена противоположно перемещению тела, то работа силы

В этом случае работа силы отрицательна.

Если сила f_vec направлена перпендикулярно перемещению s_vec тела, то работа силы равна нулю:

Работа – скалярная величина. Единицу работы называют джоуль (обозначают: Дж) в честь английского ученого Джеймса Джоуля, сыгравшего важную роль в открытии закона сохранения энергии. Из формулы (1) следует:

1 Дж = 1 Н * м.

1. Брусок массой 0,5 кг переместили по столу на 2 м, прикладывая к нему силу упругости, равную 4 Н (рис. 28.1). Коэффициент трения между бруском и столом равен 0,2. Чему равна работа действующей на брусок:
а) силы тяжести m?
б) силы нормальной реакции ?
в) силы упругости ?
г) силы трения скольжения тр?


Суммарную работу нескольких сил, действующих на тело, можно найти двумя способами:
1. Найти работу каждой силы и сложить эти работы с учетом знаков.
2. Найти равнодействующую всех приложенных к телу сил и вычислить работу равнодействующей.

Оба способа приводят к одному и тому же результату. Чтобы убедиться в этом, вернитесь к предыдущему заданию и ответьте на вопросы задания 2.

2. Чему равна:
а) сумма работ всех действующих на брусок сил?
б) равнодействующая всех действующих на брусок сил?
в) работа равнодействующей? В общем случае (когда сила f_vec направлена под произвольным углом к перемещению s_vec) определение работы силы таково.

Работа A постоянной силы равна произведению модуля силы F на модуль перемещения s и на косинус угла α между направлением силы и направлением перемещения:

A = Fs cos α (4)

3. Покажите, что из общего определения работы следуют к выводы, показанные на следующей схеме. Сформулируйте их словесно и запишите в тетрадь.


4. К находящемуся на столе бруску приложена сила, модуль которой 10 Н. Чему равен угол между этой силой и перемещением бруска, если при перемещении бруска по столу на 60 см эта сила совершила работу: а) 3 Дж; б) –3 Дж; в) –3 Дж; г) –6 Дж? Сделайте пояснительные чертежи.

2. Работа силы тяжести

Пусть тело массой m движется вертикально от начальной высоты h н до конечной высоты h к.

Если тело движется вниз (h н > h к, рис. 28.2, а), направление перемещения совпадает с направлением силы тяжести, поэтому работа силы тяжести положительна. Если же тело движется вверх (h н < h к, рис. 28.2, б), то работа силы тяжести отрицательна.

В обоих случаях работа силы тяжести

A = mg(h н – h к). (5)

Найдем теперь работу силы тяжести при движении под углом к вертикали.

5. Небольшой брусок массой m соскользнул вдоль наклонной плоскости длиной s и высотой h (рис. 28.3). Наклонная плоскость составляет угол α с вертикалью.


а) Чему равен угол между направлением силы тяжести и направлением перемещения бруска? Сделайте пояснительный чертеж.
б) Выразите работу силы тяжести через m, g, s, α.
в) Выразите s через h и α.
г) Выразите работу силы тяжести через m, g, h.
д) Чему равна работа силы тяжести при движении бруска вдоль всей этой же плоскости вверх?

Выполнив это задание, вы убедились, что работа силы тяжести выражается формулой (5) и тогда, когда тело движется под углом к вертикали – как вниз, так и вверх.

Но тогда формула (5) для работы силы тяжести справедлива при движении тела по любой траектории, потому что любую траекторию (рис. 28.4, а) можно представить как совокупность малых «наклонных плоскостей» (рис. 28.4, б).

Таким образом,
работа силы тяжести при движении но любой траектории выражается формулой

A т = mg(h н – h к),

где h н – начальная высота тела, h к – его конечная высота.
Работа силы тяжести не зависит от формы траектории.

Например, работа силы тяжести при перемещении тела из точки A в точку B (рис. 28.5) по траектории 1, 2 или 3 одинакова. Отсюда, в частности, следует, что рибота силы тяжести при перемещении по замкнутой траектории (когда тело возвращается в исходную точку) равна нулю.

6. Шар массой m, висящий на нити длиной l, отклонили на 90º, держа нить натянутой, и отпустили без толчка.
а) Чему равна работа силы тяжести за время, в течение которого шар движется к положению равновесия (рис. 28.6)?
б) Чему равна работа силы упругости нити за то же время?
в) Чему равна работа равнодействующей сил, приложенных к шару, за то же время?


3. Работа силы упругости

Когда пружина возвращается в недеформированное состояние, сила упругости совершает всегда положительную работу: ее направление совпадает с направлением перемещения (рис. 28.7).

Найдем работу силы упругости .
Модуль этой силы связан с модулем деформации x соотношением (см. § 15)

Работу такой силы можно найти графически.

Заметим сначала, что работа постоянной силы численно равна площади прямоугольника под графиком зависимости силы от перемещения (рис. 28.8).

На рисунке 28.9 изображен график зависимости F(x) для силы упругости. Разобьем мысленно все перемещение тела на столь малые промежутки, чтобы на каждом из них силу можно было считать постоянной.

Тогда работа на каждом из этих промежутков численно равна площади фигуры под соответствующим участком графика. Вся же работа равна сумме работ на этих участках.

Следовательно, и в этом случае работа численно равна площади фигуры под графиком зависимости F(x).

7. Используя рисунок 28.10, докажите, что

работа силы упругости при возвращении пружины в недеформированное состояние выражается формулой

A = (kx 2)/2. (7)


8. Используя график на рисунке 28.11, докажите, что при изменении деформации пружины от x н до x к работа силы упругости выражается формулой

Из формулы (8) мы видим, что работа силы упругости зависит только от начальной и конечной деформации пружины, Поэтому если тело сначала деформируют, а потом оно возвращается в начальное состояние, то работа силы упругости равна нулю. Напомним, что таким же свойством обладает и работа силы тяжести.

9. В начальный момент растяжение пружины жесткостью 400 Н/м равно 3 см. Пружину растянули еще на 2 см.
а) Чему равна конечная деформация пружины?
б) Чему равна работа силы упругости пружины?

10. В начальный момент пружина жесткостью 200 Н/м растянута на 2 см, а в конечный момент она сжата на 1 см. Чему равна работа силы упругости пружины?

4. Работа силы трения

Пусть тело скользит по неподвижной опоре. Действующая на тело сила трения скольжения направлена всегда противоположно перемещению и, следовательно, работа силы трения скольжения отрицательно при любом направлении перемещения (рис. 28.12).

Поэтому если сдвинуть брусок вправо, а пегом на такое же расстояние влево, то, хотя он и вернется в начальное положение, суммарная работа силы трения скольжения не будет равна нулю. В этом состоит важнейшее отличие работы силы трения скольжения от работы силы тяжести и силы упругости. Напомним, что работа этих сил при перемещении тела по замкнутой траектории равна нулю.

11. Брусок массой 1 кг передвигали по столу так, что его траекторией оказался квадрат со стороной 50 см.
а) Вернулся ли брусок в начальную точку?
б) Чему равна суммарная работа действовавшей на брусок силы трения? Коэффициент трения между бруском и столом равен 0,3.

5. Мощность

Часто важна не только совершаемая работа, но и скорость совершения работы. Она характеризуется мощностью.

Мощностью P называют отношение совершенной работы A к промежутку времени t, за который эта работа совершена:

(Иногда мощность в механике обозначают буквой N, а в электродинамике – буквой P. Мы считаем более удобным одинаковое обозначение мощности.)

Единица мощности – ватт (обозначают: Вт), названная в честь английского изобретателя Джеймса Уатта. Из формулы (9) следует, что

1 Вт = 1 Дж/c.

12. Какую мощность развивает человек, равномерно поднимая ведро воды массой 10 кг на высоту 1 м в течение 2 с?

Часто мощность удобно выражать не через работу и время, а через силу и скорость.

Рассмотрим случай, когда сила направлена вдоль перемещения. Тогда работа силы A = Fs. Подставляя это выражение в формулу (9) для мощности, получаем:

P = (Fs)/t = F(s/t) = Fv. (10)

13. Автомобиль едет по горизонтальной дороге со скоростью 72 км/ч. При этом его двигатель развивает мощность 20 кВт. Чему равна сила сопротивления движению автомобиля?

Подсказка. Когда автомобиль движется по горизонтальной дороге с постоянной скоростью, сила тяги равна по модулю силе сопротивления движению автомобиля.

14. Сколько времени потребуется для равномерного подъема бетонного блока массой 4 т на высоту 30 м, если мощность двигателя подъемного крана 20 кВт, а КПД электродвигателя подъемного крана равен 75%?

Подсказка. КПД электродвигателя равен отношению работы по подъему груза к работе двигателя.

Дополнительные вопросы и задания

15. Мяч массой 200 г бросили с балкона высотой 10 и под углом 45º к горизонту. Достигнув в полете максимальной высоты 15 м, мяч упал на землю.
а) Чему равна работа силы тяжести при подъеме мяча?
б) Чему равна работа силы тяжести при спуске мяча?
в) Чему равна работа силы тяжести за все время полета мяча?
г) Есть ли в условии лишние данные?

16. Шар массой 0,5 кг подвешен к пружине жесткостью 250 Н/м и находится в равновесии. Шар поднимают так, чтобы пружина стала недеформированной, и отпускают без толчка.
а) На какую высоту подняли шар?
б) Чему равна работа силы тяжести за время, в течение которого шар движется к положению равновесия?
в) Чему равна работа силы упругости за время, в течение которого шар движется к положению равновесия?
г) Чему равна работа равнодействующей всех приложенных к шару сил за время, в течение которого шар движется к положению равновесия?

17. Санки массой 10 кг съезжают без начальной скорости со снежной горы с углом наклона α = 30º и проезжают некоторое расстояние по горизонтальной поверхности (рис. 28.13). Коэффициент трения между санками и снегом 0,1. Длина основания горы l = 15 м.

а) Чему равен модуль силы трения при движении санок по горизонтальной поверхности?
б) Чему равна работа силы трения при движении санок по горизонтальной поверхности на пути 20 м?
в) Чему равен модуль силы трения при движении санок по горе?
г) Чему равна работа силы трения при спуске санок?
д) Чему равна работа силы тяжести при спуске санок?
е) Чему равна работа равнодействующей сил, действующих на санки, при их спуске с горы?

18. Автомобиль массой 1 т движется со скоростью 50 км/ч. Двигатель развивает мощность 10 кВт. Расход бензина составляет 8 л на 100 км. Плотность бензина 750 кг/м 3 , а его удельная теплота сгорания 45 МДж/кг. Чему равен КПД двигателя? Есть ли в условии лишние данные?
Подсказка. КПД теплового двигателя равен отношению совершенной двигателем работы к количеству теплоты, которое выделилось при сгорании топлива.

1 Вот как определяет сущность работы О.Д. Хвольсон «Сила совершает работу, когда её точка приложения перемещается... ...следует отличать два случая производства работы: в первом сущность работы заключается в преодолевании внешнего сопротивления движению, которое совершается без увеличения скорости движения тела; во втором - работа обнаруживается увеличением скорости движения, к которому внешний мир относится индифферентно. На деле мы обыкновенно имеем соединение обоих случаев: сила преодолевает какие-либо сопротивления и в то же время меняет скорость движения тела».

Для вычисления работы постоянной силы предлагается формула:

где S - перемещение тела под действием силы F , a - угол между направлениями силы и перемещения. При этом говорят , что «если сила перпендикулярна перемещению, то работа силы равна нулю. Если же, несмотря на действие силы, перемещение точки приложения силы не происходит, то сила никакой работы не совершает. Например, если какой-либо груз неподвижно висит на подвесе, то действующая на него сила тяжести не совершает работы».

В также говорится: «Понятие работы как физической величины, введенное в механике, только до известной степени согласуется с представлением о работе в житейском смысле. Действительно, например, работа грузчика по подъёму тяжести расценивается тем больше, чем больше поднимаемый груз и чем на большую высоту он должен быть поднят. Однако с той же житейской точки зрения мы склонны называть «физической работой» всякую деятельность человека, при которой он совершает известные физические усилия. Но, согласно даваемому в механике определению, эта деятельность может и не сопровождаться работой. В известном мифе об Атланте, поддерживающем на своих плечах небесный свод, люди имели в виду усилия, необходимые для поддержания огромной тяжести, и расценивали эти усилия как колоссальную работу. Для механики же здесь нет работы, и мышцы Атланта могли бы быть попросту заменены прочной колонной».

Эти рассуждения напоминают известное высказывание И.В. Сталина: «Есть человек - есть проблема, нет человека - нет проблемы».

В учебнике физики для 10 класса предлагается следующий выход из данной ситуации: «При неподвижном удержании человеком груза в поле тяжести Земли совершается работа и рука испытывает усталость, хотя видимое перемещение груза равно нулю. Причиной этого является то, что мышцы человека испытывают постоянные сокращения и растяжения, приводящие к микроскопическим перемещениям груза». Всё хорошо, вот только как рассчитать эти сокращения-растяжения?

Получается такая ситуация: человек пытается переместить шкаф на расстояние S , для чего он действует силой F в течение времени t , т.е. сообщает импульс силы . Если шкаф имеет небольшую массу и нет сил трения, то шкаф перемещается и значит, работа совершается. Но если шкаф большой массы и большие силы трения, то человек, действуя тем же импульсом силы, шкаф не перемещает, т.е. работа не совершается. Что-то тут не вяжется с так называемыми законами сохранения. Или взять пример, показанный на рис. 1. Если сила F a , то . Так как , то, естественно, возникает вопрос, куда же исчезла энергия, равная разности работ ()?

Рисунок 1. Сила F направлена горизонтально (), то работа , а если под углом a , то

Приведем пример, показывающий, что работа совершается, если тело остаётся неподвижным. Возьмем электрическую цепь состоящую из источника тока, реостата и амперметра магнитоэлектрической системы. При полностью введенном реостате сила тока бесконечно мала и стрелка амперметра стоит на нуле. Начинаем постепенно двигать реохорд реостата. Стрелка амперметра начинает отклоняться, закручивая спиральные пружины прибора. Это совершает работу сила Ампера: сила взаимодействия рамки с током с магнитным полем. Если остановить реохорд, то установится постоянная сила тока и стрелка перестает двигаться. Говорят, что если тело неподвижно, то сила работы не совершает. Но амперметр, удерживая стрелку в том же положении, по прежнему потребляет энергию , где U - напряжение, подведенное к рамке амперметра, - сила тока в рамке. Т.е. сила Ампера, удерживая стрелку, по прежнему совершает работу по удержанию пружин в закрученном состоянии.

Покажем, почему возникают подобные парадоксы. Вначале получим общепринятое выражение для работы. Рассмотрим работу разгона по горизонтальной гладкой поверхности первоначально покоящегося тела массы m за счет воздействия на него горизонтальной силой F в течение времени t . Этому случаю соответствует угол на рис.1. Запишем II закон Ньютона в виде . Умножим обе части равенства на пройденный путь S : . Поскольку , то получим или . Отметим, что умножая обе части уравнения на S , мы тем самым отказываем в работе тем силам, которые не производят перемещение тела (). Кроме того, если сила F действует под углом a к горизонту, мы тем самым отказываем в работе всей силе F , «разрешая» работу только её горизонтальной составляющей: .

Проведем другой вывод формулы для работы. Запишем II закон Ньютона в дифференциальной форме

Левая часть уравнения - элементарный импульс силы, а правая - элементарный импульс тела (количество движения). Отметим, что правая часть уравнения может быть равна нулю, если тело остается неподвижным () или движется равномерно (), в то время как левая часть не равна нулю. Последний случай соответствует случаю равномерного движения, когда сила уравновешивает силу трения .

Однако вернемся к нашей задаче о разгоне неподвижного тела. После интегрирования уравнения (2), получим , т.е. импульс силы равен импульсу (количеству движения), полученному телом. Возведем в квадрат и разделив на обе части равенства, получим

Таким образом мы получим другое выражение для вычисления работы

(4)

где - это импульс силы. Это выражение не связано с путем S , пройденным телом за время t , поэтому оно может быть использовано для вычисления работы, совершаемой импульсом силы и в том случае, если тело остается неподвижным.

В случае, если сила F действует под углом a (рис.1), то её раскладываем на две составляющие: силу тяги и силу , которую назовем силой левитации, она стремится уменьшить силу тяжести. Если будет равна , то тело будет находиться в квазиневесомом состоянии (состояние левитации). Используя теорему Пифагора: , найдем работу силы F

или (5)

Поскольку , а , то работу силы тяги можно представить в общепринятом виде: .

Если сила левитации , то работа левитации будет равна

(6)

Это как раз та работа, которую выполнял Атлант, удерживая на своих плечах небесный свод.

А теперь рассмотрим работу сил трения. Если сила трения является единственной силой, действующей по линии движения (например, автомобиль, двигавшийся по горизонтальной дороге со скоростью , выключил двигатель и стал тормозить), то работа силы трения будет равна разности кинетических энергий и может быть рассчитана по общепринятой формуле:

(7)

Однако, если тело движется по шероховатой горизонтальной поверхности с некоторой постоянной скоростью , то работу силы трения нельзя вычислять по общепринятой формуле , поскольку в данном случае движения надо рассматривать как движение свободного тела (), т.е. как движение по инерции, и скорость V создает не сила , она была приобретена ранее. Например, тело двигалось по идеально гладкой поверхности с постоянной скоростью, и в тот момент, когда оно въезжает на шероховатую поверхность, включается сила тяги . В данном случае путь S не связан с действием силы . Если взять путь м, то при скорости м/с время действия силы будет составлять с, при м/с время с, при м/с время с. Поскольку сила трения считают не зависящей от скорости, то, очевидно, на одном и том же отрезке пути м сила совершит гораздо большую работу за 200 с, чем за 10 с, т.к. в первом случае импульс силы , а в последнем - . Т.е. в данном случае работу силы трения надо рассчитывать по формуле:

(8)

Обозначая «обычную» работу трения через и учитывая, что , формулу (8), опуская знак «минус», можно представить в виде

Нам осталось рассмотреть работу третьей механической силы - силы трения скольжения. В земных условиях сила трения в той пли иной мере проявляется при всех движениях тел.

От силы тяжести и силы упругости сила трения скольжения отличается тем, что она от координат не зависит и возникает всегда при относительном движении соприкасающихся тел.

Рассмотрим работу силы трения при движении тела относительно неподвижной поверхности, с которой оно соприкасается. В этсм случае сила трения направлена против движения тела. Ясно, что по отношению к направлению перемещения такого тела сила трения не может быть направлена под каким-нибудь другим углем, кроме угла 180°. Поэтому работа силы трения отрицательна. Вычислять работу силы трения нужно по формуле

где - сила трения, - длина пути, на протяжении которого действует сила трения

Когда на тело действует сила тяжести или сила упругости, может двигаться и в направлении силы, и против направления силы. В первом случае работа силы положительна, во втором - отрицательна. При движении тела «туда и обратно» полная работа равна нулю.

О работе силы трения этого сказать нельзя. Работа силы трения отрицательна и при движении «туда», движении обратно». Поэтому работа силы трения после возвращения тела в исходную точку (при движении по замкнутому пути) неравна нулю.

Задача. Вычислите работу силы трения при торможении поезда массой 1200 т до полной остановки, если скорость поезда в момент выключения двигателя была 72 км/ч. Решение. Воспользуемся формулой

Здесь - масса поезда, равная кг, - конечная скорость поезда, равная нулю, и - его начальная скорость, равная 72 км/ч = 20 м/сек. Подставив эти значения, получим:

Упражнение 51

1. На тело действует сила трения. Может ли работа этой силы равняться нулю?

2. Если тело, на которое действует сила трения, пройдя некоторую траекторию, вернется в исходную точку, будет ли работа сипы трения равна нулю?

3. Как изменяется кинетическая энергия тела при работе силы трения?

4. Сани массой 60 кг, скатившись с горы, проехали по горизонтальному участку дороги 20 м. Найдите работу силы трения на этом участке, если коэффициент трения полозьев саней о снег 0,02.

5. К точильному камню радиусом 20 см прижимают затачиваемую деталь с силой 20 н. Определите, какая работа совершается двигателем за 2 мин, если точильный камень делает 180 об мин, а коэффициент трения детали о камень равен 0,3.

6. Шофер автомобиля выключает двигатель и начинает тормозить в 20 м от светофора. Считая силу трения равной 4 000 к, найдите, при какой наибольшей скорости автомобиля он успеет остановиться перед светофором, если масса автомобиля равна 1,6 т?

где - путь, пройденный телом за время действия силы.

После подстановки числовых значений получим.

Пример 3. Шарик массой =100 г упал с высоты =2,5 м на горизонтальную плиту и отскочил от нее вследствие упругого удара без потери скорости. Определить среднюю скорость , действовавшую на шарик при ударе, если продолжительность удара =0,1 с.

Решение. По второму закону Ньютона произведение средней силы на время ее действия равно изменению импульса тела, вызванного этой силой, т.е.

где и - скорости тела до и после действия силы; - время, в течение которого действовала сила.

Из (1) получим

Если учесть, что скорость численно равна скорости и противоположна ей по направлению, то формула (2) примет вид:

Так как шарик упал с высоты, то его скорость при ударе

С учетом этого получим

Подставив сюда числовые значения, найдем

Знак «минус» показывает, что сила направлена противоположно скорости падения шарика.

Пример 4. Для подъема воды из колодца глубиной =20 м установили насос мощностью =3,7 кВт. Определить массу и объем воды, поднятой за время =7 ч, если к.п.д. насоса =80%.

Решение. Известно, что мощность насоса с учетом к.п.д. определяется формулой

где - работа, совершенная за время; - коэффициент полезного действия.

Работа, совершенная при подъеме груза без ускорения на высоту, равна потенциальной энергии, которой обладает груз на этой высоте, т.е.

где - ускорение свободного падения.

Подставив выражение работы по (2) в (1), получим

Выразим числовые значения величин, входящих в формулу (3), в единицах СИ: =3,7 кВт = 3,7 103 Вт; =7 ч = 2,52 104 с; =80%=0,8; =20 м.

кг кг м2 с2/(с3 м м), кг=кг

Вычислим

кг=3,80 105 кг=380 т.

Чтобы определить объем воды, надо ее массу разделить на плотность

Пример 5. Искусственный спутник Земли движется по круговой орбите на высоте =700 км. Определить скорость его движения. Радиус Земли =6,37 106 м, масса ее =5,98 1024 кг.

Решение. На спутник, как и на всякое тело, движущееся по круговой орбите, действует центростремительная сила

где - масса спутника; V- скорость его движения; - радиус кривизны траектории.

Если пренебречь сопротивлением среды и силами тяготения со стороны всех небесных тел, то можно считать, что единственной силой является сила притяжения между спутником и Землей. Эта сила и играет роль центростремительной силы.

Согласно закону всемирного тяготения

где - гравитационная постоянная.

Приравняв правые части (1) и (2), получим

Отсюда скорость спутника

Выпишем числовые значения величин в СИ: = 6,67*10-11 м3/(кг с2); =5,98 1024 кг; = 6,37 106 м; = 700 км = 7 105 м.

Проверим единицы правой и левой частей расчетной формулы (3), чтобы убедиться, что эти единицы совпадают. Для этого подставляем в формулу вместо величин их размерность в Международной системе:

Вычислим

Пример 6. Маховик в виде сплошного диска массой т = 80 кг с радиусом = 50 см начал вращаться равноускоренно под действием вращающего момента = 20 Н м. Определить: 1) угловое ускорение; 2) кинетическую энергию, приобретенную маховиком за время = 10 с от начала вращения.

Решение. 1. Из основного уравнения динамики вращательного движения,

где - момент инерции маховика; - угловое ускорение, получим

Известно, что момент инерции диска определяется формулой

Подставив выражение для из (2) в (1), получим

Выразим величины в единицах СИ: = 20 Н м; т = 80 кг; = 50 см = 0,5 м.

Проверим единицы правой и левой частей расчетной формулы (3):

1/c2 = кг х м2/(с2х кг х м2) = 1/с2

Вычислим

2. Кинетическая энергия вращающегося тела выражается формулой:

где - угловая скорость тела.

При равноускоренном вращении угловая скорость связана с угловым ускорением соотношением

где - угловая скорость в момент времени; - начальная угловая скорость.

Так как по условию задачи =0, то из (5) следует

Подставив выражение для из (6), из (2) в (4), получим

Проверим единицы правой и левой частей формулы (7):

Вычислим

Пример 7. Уравнение колеблющейся точки имеет вид.(смещение в сантиметрах, время в секундах). Определить: 1) амплитуду колебания, круговую частоту, период и начальную фазу; 2) смещение точки в момент времени с; 3) максимальную скорость и максимальное ускорение.

Решение. 1. Напишем уравнение гармонического колебательного движения в общем виде

где х - смещение колеблющейся точки; А - амплитуда колебания; -круговая частота; - время колебания; - начальная фаза.

Сравнивая заданное уравнение с уравнением (1), выпишем: А=3 см,

Период колебания определяется из соотношения

Подставляя в (2) значение, получим

2. Для определения смещения подставим в заданное уравнение значение времени:

3. Скорость колебательного движения найдем, взяв первую производную от смещения колеблющейся точки:

(Максимальное значение скорость будет иметь при =1:

Ускорение есть первая производная от скорости по времени:

Максимальное значение ускорения

Знак «минус» показывает, что ускорение направлено в сторону, противоположную смещению.

Мякишев Г.Я., Кондрашева Л., Крюков С. Работа сил трения //Квант. - 1991. - № 5. - С. 37-39.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Сила трения, как и любая другая сила, совершает работу и соответственно изменяет кинетическую энергию тела при условии, если точка приложения силы перемещается в выбранной системе отсчета. Однако сила трения существенно отличается от других, так называемых консервативных, сил (тяготения и упругости), так как ее работа зависит от формы траектории. Вот почему работу сил трения ни при каких обстоятельствах нельзя представить в виде изменения потенциальной энергии системы. Кроме того, дополнительные сложности при вычислении работы создает специфика силы трения покоя. Здесь существует ряд стереотипов физического мышления, которые хотя и лишены смысла, но очень устойчивы.

Мы рассмотрим несколько вопросов, связанных с не вполне правильным пониманием роли силы трения в изменении энергии системы тел.

О силе трения скольжения

Нередко говорят, что сила трения скольжения всегда совершает отрицательную работу и это приводит к увеличению внутренней (тепловой) энергии системы.

Такое утверждение нуждается в важном уточнении - оно справедливо только в том случае, если речь идет не о работе одной отдельно взятой силы трения скольжения, а о суммарной работе всех таких сил, действующих в системе. Дело в том, что работа любой силы зависит от выбора системы отсчета и может быть отрицательной в одной системе, но положительной в другой. Суммарная же работа всех сил трения, действующих в системе, не зависит от выбора системы отсчета и всегда отрицательна. Вот конкретный пример.

Положим кирпич на движущуюся тележку так, чтобы он начал по ней скользить (рис. 1). В системе отсчета, связанной с землей, сила трения F 1 , действующая на кирпич до, прекращения скольжения, совершает положительную работу A 1 . Одновременно сила трения F 2 , действующая на тележку (и равная по модулю первой силе), совершает отрицательную работу A 2 , по модулю большую, чем работа A 1 , так как путь тележки s больше пути кирпича s - l (l - путь кирпича относительно тележки). Таким образом, получаем

\(~A_1 = \mu mg(s - l), A_2 = -\mu mgs\) ,

и полная работа сил трения

\(~A_{tr} = A_1 + A_2 = -\mu mgl < 0\) .

Поэтому кинетическая энергия системы убывает (переходит в тепло):

\(~\Delta E_k = -\mu mgl\) .

Этот вывод имеет общее значение. Действительно, работа двух сил (не только сил трения), осуществляющих взаимодействие между телами, не зависит от выбора системы отсчета (докажите это самостоятельно). Всегда можно перейти к системе отсчета, относительно которой одно из тел покоится. В ней работа силы трения, действующей на движущееся тело, всегда отрицательна, так как сила трения направлена против относительной скорости. Но она отрицательна и в любой другой системе отсчета. Следовательно, всегда, при любом количестве тел в системе, A tr < 0. Эта работа и уменьшает механическую энергию системы.

О силе трения покоя

При действии между соприкасающимися телами силы трения покоя ни механическая, ни внутренняя (тепловая) энергия этих тел не изменяется. Значит ли это, что работа силы трения покоя равна нулю? Как и в первом случае, такое утверждение правильно только по отношению к полной работе сил трения покоя над всеми взаимодействующими телами. Одна же отдельно взятая сила трения покоя может совершать работу, причем как отрицательную, так и положительную.

Рассмотрим, например, книгу, лежащую на столе в набирающем скорость поезде. Именно сила трения покоя сообщает книге такую же скорость, как у поезда, т. е. увеличивает ее кинетическую энергию, совершая определенную работу при этом. Другое дело, что такая же по модулю, но противоположная по направлению сила действует со стороны книги на стол, а значит, и на поезд в целом. Эта сила совершает точно такую же работу, но только отрицательную. В результате получается, что полная работа двух сил трения покоя равна нулю, и механическая энергия системы тел не меняется.

О движении автомобиля без проскальзывания колес

Самое устойчивое заблуждение связано именно с этим вопросом.

Пусть автомобиль вначале покоится, а затем начинает разгоняться (рис. 2). Единственной внешней силой, сообщающей автомобилю ускорение, является сила трения покоя F tr действующая на ведущие колеса (мы пренебрегаем силой сопротивления воздуха и силой трения качения). Согласно теореме о движении центра масс, импульс силы трения равен изменению импульса автомобиля:

\(~F_{tr} \Delta t = \Delta(M \upsilon_c) = M \upsilon_c\) ,

если скорость центра масс в начале движения равнялась нулю, а в конце υ c . Приобретая импульс, т. е. увеличивая свою скорость, автомобиль одновременно получает и определенную порцию кинетической энергии. А поскольку импульс сообщается силой трения, естественно считать, что и увеличение кинетической энергии определяется работой этой же силы. Вот это-то утверждение оказывается совершенно неверным. Сила трения ускоряет автомобиль, но работы при этом не совершает. Как же так?

Вообще говоря, ничего парадоксального в этой ситуации нет. В качестве примера достаточно рассмотреть совсем простую модель - гладкий кубик с прикрепленной сбоку пружинкой (рис. 3). Кубик, придвигают к стене, сжимая пружинку, а затем отпускают. «Отталкиваясь» от стены, наша система (кубик с пружинкой) приобретает определенные импульс и кинетическую энергию. Единственной внешней силой, действующей по горизонтали на систему, является, очевидно, сила реакции стены F p . Именно она и сообщает системе ускорение. Однако никакой работы при этом, конечно, не совершается - ведь точка приложения этой силы неподвижна (в системе координат, связанной с землей), хотя сила действует некоторое конечное время Δt .

Аналогичная ситуация возникает и при разгоне автомобиля без проскальзывания. Точка приложения силы трения, действующей на ведущее колесо автомобиля, т. е. точка соприкосновения колеса с дорогой, в любой момент покоится относительно дороги (в системе отсчета, связанной с дорогой). При движении автомобиля она исчезает в одной точке и сразу же появляется в соседней.

Не противоречит ли сказанное закону сохранения механической энергии? Конечно же, нет. В нашем случае с автомобилем изменение кинетической энергии системы происходит за счет ее внутренней энергии, выделяющейся при сгорании топлива.

Для простоты рассмотрим чисто механическую систему: игрушечный автомобиль с пружинным заводом. Двигатель такого автомобиля использует не внутреннюю энергию топлива, а потенциальную энергию сжатой пружины. Вначале пружина заведена, и ее потенциальная энергия E p1 отлична от нуля. Если двигатель игрушки - просто растянутая пружина, то \(~E_{p1} = \frac{k (\Delta l)^2}{2}\). Кинетическая энергия равна нулю, и полная начальная энергия автомобиля E 1 = E p1 . В конечном состоянии, когда деформация пружины исчезнет, потенциальная энергия равна нулю, а кинетическая энергия \(~E_{k2} = \frac{M \upsilon_c^2}{2}\). Полная энергия E 2 = E k2 . Согласно закону сохранения энергии (трением мы пренебрегаем),

\(~\frac{M \upsilon_c^2}{2} = \frac{k (\Delta l)^2}{2}\) .

В случае реального автомобиля

\(~\frac{M \upsilon_c^2}{2} = \Delta U\) ,

где ΔU - энергия, полученная при сгорании топлива.

Если колеса автомобиля проскальзывают, то A tr <0, так как точка соприкосновения колес с дорогой движется против направления силы трения. Следовательно,

\(~\frac{M \upsilon_c^2}{2} = \frac{k (\Delta l)^2}{2} + A_{tr}\) .

Видно, что кинетическая энергия автомобиля в конечном состоянии оказывается меньше, чем в отсутствие проскальзывания.